

DCK-003-1164003

Seat No. _____

M. Sc. (Sem. IV) Examination

July - 2022

Mathematics: CMT-4003

(Number Theory - II)

Faculty Code: 003

Subject Code: 1164003

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) There are five questions.

- (2) All the questions are compulsory.
- (3) Each question carries 14 marks.
- 1 Do as directed: (Answer any seven)

14

- (a) Find out the values of r_1 , r_2 , r_3 of $\langle 0, 2, 2, 2, 2, 2 \rangle$.
- (b) Find the period of $\sqrt{18}$.
- (c) Find four positive integers for which 1+2+3+4... ... + n is a perfect square.
- (d) Find the general solution if any of the equation 131x + 211y = 2.
- (e) If (x, y, z) is a Pythagorean Triplet then show that, g.c.d (y, z) = g.c.d (x, z).
- (f) Write down, any two solution of 3x + 5y = 8.
- (g) Prove that, the g.c.d. (x, y) where $\frac{x}{y}$ farey fraction of the n^{th} row is 1.
- (h) Find the value of $\langle 0, 3, 3, 3, ..., ... \rangle$ and $\langle -2, 1, 2, 6, 14 \rangle$.
- (i) Express the numbers $\sqrt{7} + 2$ and $\sqrt{3} 1$ in continued fraction expansion.
- (j) Write the statement of Hurwitz's Inequality for x, y > 0 for farey fractions.

- 2 Answer any two of the following:
 - (1) Solve the linear Diophantine equation 172x + 20y = 1000 by usual method.
 - (2) Prove that, $x^2 143y^2 + 1 = 0$ has no solution in integers.
 - (3) If p, q is a positive solution of $x^2 ny^2 = 1$, then $\frac{p}{q}$ is a convergent of the continued fraction of \sqrt{n} .
- 3 Answer the following:
 - (1) Suppose $C_n x^n + C_{n-1} x^{n-1} + \dots + C_0$ is a polynomial with integer co-efficient and $\frac{s}{t}$ is a rational number with t is a positive and (s, t) = 1. Let $\frac{s}{t}$ be a root of this polynomial. Prove that, s divide to C_0 and t divide to C_n . Hence, deduce that, if a is an integer and $x^n = a$
 - (2) (i) Suppose r and s are positive integer such that $r > s \ge 1$, (r, s) = 1 and r is even then s is odd and vice-versa then prove that, the triplet (x, y, z) is a Primitive Pythagorean triplet where $x = r^2 s^2$, y = 2rs and $z = r^2 + s^2$.

has a rational root then it must be an integer.

(ii) If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial with integer coefficient with degree n and if $\frac{a}{b}$ satisfies f(x) then prove that, $b \mid a_n$ and $a \mid a_0$ provided (a,b)=1 and $b \geq 0$.

OR

14

14

3 Answer the following:

- s a
- (1) Prove that, the value $f(x) = x^4 + x^3 + x^2 + x + 1$ is a perfect square for x = -1, 0 and 3 and for some values of x, f(x) is not a perfect square.
- (2) Prove that, if x is a rational number then its finite simple continued fraction expansion is always unique provided the last term is not equals to 1.
- 4 Answer the following:

14

14

- (1) Suppose (x_1, y_1) is a smallest positive solution of $x^2 dy^2 = 1$ then prove that :
 - (i) $(x_1 + \sqrt{d}y_1)^n$ is a solution of it for $n \ge 1$.
 - (ii) Every positive solution is of the form $(x_1 + \sqrt{d}y_1)^n$ for some n.
- (2) (i) If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive farey fractions in the n^{th} row then show that, |ad-bc|=1.
 - (ii) Find the general solution of 4x + 27y = 22.
- 5 Answer any two of the following:

14

- (1) Show that, the equation $x^4 = z^2 y^4$ has no solution in integers.
- (2) If $a_0, a_1, a_2, ..., a_n, ...$ are integers with $a_i \ge 1; \forall i \ge 1$ then the number θ is and irrational number if and only if the expansion $\langle a_0, a_1, a_2, ..., a_n, \rangle$ is infinite.
- (3) Suppose θ is a quadratic irrational such that $\theta > 1$ and $-1 < \theta' < 0$. Prove that its periodic continued fraction expansion is purely periodic. Confirm the result for $\frac{\sqrt{3}+1}{2}$.
- (4) Find first four positive solution of $x^2 19y^2 = 1$.